Myfab Lund

Myfab Lund or Lund Nano Lab (LNL) is a cleanroom facility with a world-class expertise in epitaxial growth and processing of semiconductor nanowires. The laboratory is one of the essential resources for NanoLund researchers, but it is open for other academic and industrial users. The Myfab Lund staff supports its customers with the cleanroom and safety training, equipment support and technology development. The laboratory is actively used in several courses for undergraduate and graduate students thus linking education with fundamental/applied research and industry.

We welcome all users to access the equipment for fundamental research and development in the fields of materials science, nanotechnology, microelectronics, life science and quantum technology. Myfab Lund is staffed with metrology, equipment and process experts who are available to train and guide you. We also educate students enrolled at Lund University and participate in outreach activities for the local community and society. Myfab Lund has been a member of Myfab, the Swedish Research Infrastructure for Micro and Nano Fabrication since 2016.

Highlights

Quantum Testbed now open to WACQT partners and researchers

292 0
Peter Modh
/ Categories: Myfab Chalmers

Chalmers Next Labs announces the opening of the Quantum Testbed, offering support with quantum technologies, for WACQT partners and researchers. The testbed will offer access to state of the art resources for both quantum hardware and quantum software testing. Following the agreement signed with IBM in January 2024, IBM’s top-of-the-line quantum computers are now also made accessible to WACQT collaborators.

The announcement means that the center’s partners — Saab, AstraZeneca, Ericsson, Jeppesen, Volvo Group, Hitachi Energy, KTH, Lund University, Stockholm University, Linköping University, Gothenburg University, and Chalmers — now may run algorithms on world-leading quantum computers. Through the testbed, researchers and developers have access to IBM’s 127-qubit Eagle and 133-qubit Heron quantum processors.

Print