Myfab Lund

Myfab Lund or Lund Nano Lab (LNL) is a cleanroom facility with a world-class expertise in epitaxial growth and processing of semiconductor nanowires. The laboratory is one of the essential resources for NanoLund researchers, but it is open for other academic and industrial users. The Myfab Lund staff supports its customers with the cleanroom and safety training, equipment support and technology development. The laboratory is actively used in several courses for undergraduate and graduate students thus linking education with fundamental/applied research and industry.

We welcome all users to access the equipment for fundamental research and development in the fields of materials science, nanotechnology, microelectronics, life science and quantum technology. Myfab Lund is staffed with metrology, equipment and process experts who are available to train and guide you. We also educate students enrolled at Lund University and participate in outreach activities for the local community and society. Myfab Lund has been a member of Myfab, the Swedish Research Infrastructure for Micro and Nano Fabrication since 2016.

Highlights

Breakthrough may clear major hurdle for quantum computers

431 0
Peter Modh
/ Categories: Myfab Chalmers

The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team from Chalmers University of Technology has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers. 

For the impact of quantum computers to be realized in society, quantum researchers first need to deal with some major obstacles. So far, errors and noise stemming from, for example, electromagnetic interference or magnetic fluctuations, cause the sensitive qubits to lose their quantum states – and subsequently their ability to continue the calculation. The amount of time that a quantum computer can work on a problem is thus so far limited. Additionally, for a quantum computer to be able to tackle complex problems, quantum researchers need to find a way to control the quantum states. Like a car without a steering wheel, quantum states may be considered somewhat useless if there is no efficient control system to manipulate them. 

However, the research field is facing a trade-off problem. Quantum systems that allow for efficient error correction and longer computations times are on the other hand deficient in their ability to control quantum states – and vice versa. But now a research team at Chalmers University of Technology has managed to find a way to battle this dilemma. 

“We have created a system that enables extremely complex operations on a multi-state quantum system, at an unprecedented speed,” says Simone Gasparinetti, leader of the 202Q-lab at Chalmers University of Technology and senior author of the study.

Print