Myfab Lund

Myfab Lund or Lund Nano Lab (LNL) is a cleanroom facility with a world-class expertise in epitaxial growth and processing of semiconductor nanowires. The laboratory is one of the essential resources for NanoLund researchers, but it is open for other academic and industrial users. The Myfab Lund staff supports its customers with the cleanroom and safety training, equipment support and technology development. The laboratory is actively used in several courses for undergraduate and graduate students thus linking education with fundamental/applied research and industry.

We welcome all users to access the equipment for fundamental research and development in the fields of materials science, nanotechnology, microelectronics, life science and quantum technology. Myfab Lund is staffed with metrology, equipment and process experts who are available to train and guide you. We also educate students enrolled at Lund University and participate in outreach activities for the local community and society. Myfab Lund has been a member of Myfab, the Swedish Research Infrastructure for Micro and Nano Fabrication since 2016.

Highlights

Important component in the search for Earth-like planets

161 0
Eva Hellberg
/ Categories: Myfab, Myfab Uppsala

hands in gloves holds small device

A new technique for reducing light interference during telescope observations enables imaging of Earth-like planets in nearby solar systems. The method has shown promising results in studies by an international team of astronomers and physicists, including researchers from Uppsala University.

Because of current technical limitations, it has been difficult to image exoplanets, i.e., planets outside of our solar system. Those images we do have are in most cases giant planets, much larger than Jupiter, which orbit very young stars. Often, these planets are also far from the habitable zone, where liquid water is found on the planet surface and creates the conditions for life.

One way to discover Earth-like planets in the habitable zone around stars similar to our sun in both size and age is to observe the sky in the infrared. These types of planets shine brightest at these wavelengths. But one problem is that both the atmosphere and the actual telescope emit infrared light, causing interference.

A new system has been developed to enable capturing images of smaller exoplanets by observing them over long periods, about 100 hours of observation time, in the middle of the infrared spectrum. The system has been used at the European Southern Observatory’s (ESA) Very Large Telescope (VLT) in Chile and has attained unmatched sensitivity using a diamond coronagraph that was produced at Ångström Laboratory at Uppsala University.

Coronagraphs are used to reduced blinding light from a star and, in this way, accentuate the weaker light from any planets orbiting it.

The study is part of Breakthrough Initiatives, a global space science programme searching for Earth-like planets around nearby stars.

“The method could, in a best case scenario, capture images of planets about 3 times the diameter of Earth in the habitable zone of Alpha Centauri A. That is equivalent to an improvement by a factor of 10 compared to existing systems for direct observations,” says Mikael Karlsson, the head of the research team within diamond optics at Uppsala University.

Print