Myfab Uppsala

The Ångström Laboratory is a powerful environment for a broad spectrum of materials science. Myfab Uppsala is the core facility, providing advanced process and analysis tools for micro- and nanotechnology. In the Myfab cleanroom, the entire sequence from realization to evaluation is available under one roof. We provide an open user facility for university and industry personnel active in research or development.


The lab staff is responsible for the lab operation, such as: 

- cleanroom infrastructure
- equipment maintenance
- user education, training and support
- development and control of processes and methods
- commissions for internal and external customers

Myfab Uppsala is a state-of-the-art laboratory and a competent organization that provide a link between university research and industrial development.

 

Highlights

High-quality nanomechanical resonators with built-in piezoelectricity

125 0
Eva Hellberg
/ Categories: Myfab, Myfab Chalmers

Nanomechanical resonator

Mechanical resonators have been used for centuries for a multitude of applications. A key aspect of these devices is their ability to vibrate at specific frequencies. A well-known example is the tuning fork. When struck, the tuning fork oscillates at its resonance frequency, producing a sound wave within our hearing range. With advancements in microfabrication techniques, researchers have been able to shrink mechanical resonators down to the micro- and nanometer scale. At these tiny sizes, resonators oscillate at much higher frequencies and exhibit a greater sensitivity compared to their macroscopic counterparts.

“These properties make them useful in precision experiments, for example for sensing minuscule forces or mass changes. Recently, nanomechanical resonators have raised significant interest among quantum physicists due to their potential use in quantum technologies. For example, the use of quantum states of motion would improve the sensitivity of nanomechanical resonators even further,” says Witlef Wieczorek, Professor of Physics at Chalmers University of Technology and project leader of the study.

A common requirement for these applications is that nanomechanical resonators need to sustain their oscillation for long times without losing their energy. This ability is quantified by the mechanical quality factor. A large mechanical quality factor also implies that the resonator exhibits enhanced sensitivity and that quantum states of motion live longer. These properties are highly sought after in sensing and quantum technology applications.

Print