Skip to content

Material breakthrough paves way for major energy savings in memory chips

The material features a magnetic alloy made from both magnetic and non-magnetic elements (cobalt, iron, germanium and tellurium), allowing ferromagnetism and antiferromagnetism to coexist within a sin
Photo: Chalmers / Roselle Ngaloy |The material features a magnetic alloy made from both magnetic and non-magnetic elements (cobalt, iron, germanium and tellurium), allowing ferromagnetism and antiferromagnetism to coexist within a sin

It is anticipated that, within just a few decades, the surging volume of digital data will constitute one of the world’s largest energy consumers. Now, researchers at Chalmers University of Technology, Sweden, have made a breakthrough that could shift the paradigm: an atomically thin material that enables two opposing magnetic forces to coexist – dramatically reducing energy consumption in memory devices by a factor of ten. This discovery could pave the way for a new generation of ultra-efficient, reliable memory solutions for AI, mobile technology and advanced data processing.

Memory units are essential components in virtually all modern technologies that process and store information – AI systems, smartphones, computers, autonomous vehicles, household appliances and medical devices. Magnetism has emerged as a key player in the evolution of digital memory. By harnessing the behaviour of electrons in magnetic materials under external fields and electric currents, researchers can design memory chips that are faster, smaller and more energy-efficient. However, the volume of data being stored, processed and transmitted is growing exponentially. Within a few decades, it is projected to account for nearly 30 per cent of global energy consumption. This has prompted an urgent search for new approaches to building far more energy-efficient memory units – while unlocking entirely new technological opportunities.

Now, the Chalmers team is the first in the world to unveil how a novel, layered material combines two distinct magnetic forces, enabling a tenfold reduction in energy consumption in memory devices.

“Finding this coexistence of magnetic orders in a single, thin material is a breakthrough. Its properties make it exceptionally well-suited for developing ultra-efficient memory chips for AI, mobile devices, computers and future data technologies,” says Dr. Bing Zhao, a researcher in quantum device physics at Chalmers and lead author of a study published in Advanced Materials.

Highlights and events

bachelor students from the Introduction to Engineering Physics course offered by the Faculty of Science and Technology at Uppsala University. Pictured here is just part of a larger group of around 60 curious and motivated future engineers.
2025 10 01
Myfab Uppsala

Future engineers visit Myfab Uppsala

Read more
At the event: Peter Modh, Chalmers - Vanya Darakchieva, Lund University - Mikael Östling, KTH
2025 09 24
Myfab , Myfab Chalmers , Myfab KTH , Myfab Lund

Inauguration – WBG Pilot Line

Read more
The second gear from the right has an optical metamaterial that react to laserlight and makes the gear move. All gears are made in silica directly on a chip. Each gear is about 0.016 mm in diameter.
2025 09 22
Myfab Chalmers

Light-powered motor fits inside a strand of hair

Read more
Illustration of Recycling Instructions
2025 09 15
Myfab Lund

Sorting for Sustainability

Read more
See all highlights