Skip to content

Innovative fabrication method for flat magnetic nanostructures

Four step process: 1. Sputtering, 2. Patterned mask, 3. Implantation, 4. Removal of mask

“These flat magnetic nanostructures present promising potential for advanced applications, including in-material computation, that is that the material itself can function as a computer, processing and calculating solutions internally, making certain types of problem-solving faster and more efficient”, says Christina Vantaraki, PhD student at the Department of Physics and Astronomy and the developer of the method.

This new way of designing nano magnets was supported through resources at the Materials Physics Division of the Department of Physics and Astronomy, MyFab Uppsala, and the Tandem Laboratory and was achieved in four steps.

Highlights and events

Researchers at Chalmers have discovered a quick and easy way to study the hidden forces that bind the smallest objects in the universe together. Photo: Mia Halleröd Palmgren
2025 10 31
Myfab Chalmers

A platform of gold reveals the forces of nature’s invisible glue

Read more
2025 10 29
Myfab Uppsala , Myfab Chalmers

Minimal pixels achieve the highest possible resolution visible to the human eye

Read more
Katia Gallo in her lab
2025 10 17
Myfab KTH

Quantum communication could become the superpower of the future

Read more
person processing in cleanroom
2025 10 15
Myfab Lund

Myfab Lund strengthens Obducat’s R&D capabilities

Read more
See all highlights