Skip to content

Innovative fabrication method for flat magnetic nanostructures

Four step process: 1. Sputtering, 2. Patterned mask, 3. Implantation, 4. Removal of mask

“These flat magnetic nanostructures present promising potential for advanced applications, including in-material computation, that is that the material itself can function as a computer, processing and calculating solutions internally, making certain types of problem-solving faster and more efficient”, says Christina Vantaraki, PhD student at the Department of Physics and Astronomy and the developer of the method.

This new way of designing nano magnets was supported through resources at the Materials Physics Division of the Department of Physics and Astronomy, MyFab Uppsala, and the Tandem Laboratory and was achieved in four steps.

Highlights and events

Event
2025 12 19
Myfab Chalmers , Myfab , Myfab KTH , Myfab Lund , Myfab Uppsala

 Jan 27–28: Nano-Micro-Lithography Symposium 2026

Read more
Sample holder with a quantum material device chip that is inserted into a sample probe and cooled to a millikelvin temperature inside the dilution refrigerator. Photo: Tobias Sterner/Bildbyrån.
2025 12 11
Myfab Uppsala

New possibilities for quantum breakthroughs

Read more
Beta testing underway and manufacturing planned by 2027. Lund University and NanoLund spin-out company AlixLab’s disruptive technology for miniaturising electronic chip fabrication is becoming big.
2025 12 10
Myfab Lund

AlixLabs scales up with €14M investment

Read more
2025 12 04
Myfab KTH

How Europe’s semiconductor factory is being built in Kista – Carina Zaring is in control of a machine park worth billions

Read more
See all highlights