Skip to content

Innovative fabrication method for flat magnetic nanostructures

Four step process: 1. Sputtering, 2. Patterned mask, 3. Implantation, 4. Removal of mask

“These flat magnetic nanostructures present promising potential for advanced applications, including in-material computation, that is that the material itself can function as a computer, processing and calculating solutions internally, making certain types of problem-solving faster and more efficient”, says Christina Vantaraki, PhD student at the Department of Physics and Astronomy and the developer of the method.

This new way of designing nano magnets was supported through resources at the Materials Physics Division of the Department of Physics and Astronomy, MyFab Uppsala, and the Tandem Laboratory and was achieved in four steps.

Highlights and events

2025 12 08
Myfab KTH

How Europe’s semiconductor factory is being built in Kista – Carina Zaring is in control of a machine park worth billions

Read more
2025 12 03
Myfab Chalmers , Myfab

Nils Engelsen recives Wallenberg Academy Fellow grant

Read more
2025 11 28
Myfab Chalmers , Myfab , Myfab KTH , Myfab Lund , Myfab Uppsala

The Swedish Research Council has awarded Myfab with 27 MSEK additional funding to ensure that the infrastructure can meet the advanced needs of upcoming excellence clusters for ground-breaking technology.

Read more
2025 11 27
Myfab Chalmers , Myfab

Nobel Prize-awarded material that puncture and kill bacteria

Read more
See all highlights