Skip to content

Making conductive polymer nanowires to probe cells

Electron microscopy image of algae sitting on the nanowires. Picture: Martin Hjort
Electron microscopy image of algae sitting on the nanowires. Picture: Martin Hjort

Polymer nanowires remain conductive after lithography-free manufacturing enabling an excellent path for intracellular bioelectronic manipulation of stem cells and algae. A new study spearheaded by NanoLundians Damien Hughes and Martin Hjort presents a simple, yet efficient way to bring conductive polymers into a nanowire shape suitable to interface with living cells – and even allowing them to get really cozy together!

Highlights and events

bachelor students from the Introduction to Engineering Physics course offered by the Faculty of Science and Technology at Uppsala University. Pictured here is just part of a larger group of around 60 curious and motivated future engineers.
2025 10 01
Myfab Uppsala

Future engineers visit Myfab Uppsala

Read more
The material features a magnetic alloy made from both magnetic and non-magnetic elements (cobalt, iron, germanium and tellurium), allowing ferromagnetism and antiferromagnetism to coexist within a sin
2025 09 26
Myfab Chalmers

Material breakthrough paves way for major energy savings in memory chips

Read more
At the event: Peter Modh, Chalmers - Vanya Darakchieva, Lund University - Mikael Östling, KTH
2025 09 24
Myfab , Myfab Chalmers , Myfab KTH , Myfab Lund

Inauguration – WBG Pilot Line

Read more
The second gear from the right has an optical metamaterial that react to laserlight and makes the gear move. All gears are made in silica directly on a chip. Each gear is about 0.016 mm in diameter.
2025 09 22
Myfab Chalmers

Light-powered motor fits inside a strand of hair

Read more
See all highlights