Skip to content

Quantum fridge enables reliable quantum computers

Closeup of component used in quantum computers
Quantum refrigerator

Quantum computers need extreme cooling for reliable calculations, with qubits requiring temperatures close to absolute zero. Researchers at Chalmers and the University of Maryland have developed a new refrigerator that autonomously cools superconducting qubits to record low temperatures, enhancing the reliability of quantum computation.

Quantum computers have the potential to revolutionise fundamental technologies in various sectors of society, with applications in medicine, energy, encryption, AI, and logistics. While the building blocks of a classical computer – bits – can take a value of either 0 or 1, the most common building blocks in quantum computers – qubits – can have a value of 0 and 1 simultaneously. The phenomenon is called superposition and is one of the reasons why a quantum computer can perform parallel computations, resulting in enormous computational potential. However, the time a quantum computer can work on a calculation is still significantly constrained, because it spends a lot of time correcting errors.

“Qubits, the building blocks of a quantum computer, are hypersensitive to their environment. Even extremely weak electromagnetic interference leaking into the computer could flip the value of the qubit randomly, causing errors – and subsequently hindering quantum computation,” says Aamir Ali, research specialist in quantum technology at Chalmers University of Technology.

Read the article by Chalmers

Highlights and events

Event
2025 12 19
Myfab Chalmers , Myfab , Myfab KTH , Myfab Lund , Myfab Uppsala

 Jan 27–28: Nano-Micro-Lithography Symposium 2026

Read more
Sample holder with a quantum material device chip that is inserted into a sample probe and cooled to a millikelvin temperature inside the dilution refrigerator. Photo: Tobias Sterner/Bildbyrån.
2025 12 11
Myfab Uppsala

New possibilities for quantum breakthroughs

Read more
Beta testing underway and manufacturing planned by 2027. Lund University and NanoLund spin-out company AlixLab’s disruptive technology for miniaturising electronic chip fabrication is becoming big.
2025 12 10
Myfab Lund

AlixLabs scales up with €14M investment

Read more
2025 12 04
Myfab KTH

How Europe’s semiconductor factory is being built in Kista – Carina Zaring is in control of a machine park worth billions

Read more
See all highlights