Skip to content

Unique nanodisk pushing photonic research forward

Closeup of nanodisk

Researchers at Chalmers University of Technology have for the first time succeeded in combining two major research fields in photonics by creating a nanoobject with unique optical qualities. Since the object is a thousand times thinner than the human hair, yet very powerful, the breakthrough has great potential in the development of efficient and compact nonlinear optical devices.
“My feeling is that this discovery has a great potential,” says Professor Timur Shegai, who led the study at Chalmers.

Photonic applications harness the power of light-matter interactions to generate various intriguing phenomena. This has enabled major advances in communications, medicine, and spectroscopy, among others, and is also used in laser and quantum technologies. Now, researchers at the Department of Physics at Chalmers University of Technology have succeeded in combining two major research fields – nonlinear and high-index nanophotonics – in a single disk-like nanoobject.

“We were amazed and happy by what we managed to achieve. The disk looking structure is much smaller than the wavelength of light, yet it’s a very efficient light frequency converter. It is also 10,000 times, or maybe even higher, more efficient than the unstructured material of the same kind, proving that nano structuring is the way to boost efficiency,” says doctor Georgii Zograf, lead author of the article in Nature Photonics where the research results are presented.

Highlights and events

Meeting Closeup image with sharp green light
2025 03 25
Myfab

April 8-9: Nordic Nanolab Network (NNN)

Read more
Person in protective gear smiling while sitting down in front of a machine control panel
2025 03 06
Myfab Chalmers , Myfab KTH , Myfab Lund , Myfab Uppsala

Myfab labs receive funding to strengthen the semiconductor ecosystem

Read more
Vanya Darakchieva and Andri Dhora work on the PLD apparatus. Photo: Jenny Leyman
2025 03 06
Myfab , Myfab Lund

“Research chef” refines the recipe for semiconductors

Read more
Electron microscopy image of algae sitting on the nanowires. Picture: Martin Hjort
2025 03 05
Myfab , Myfab Lund

Making conductive polymer nanowires to probe cells

Read more
See all highlights